線形代数

線形代数~センター試験風~

なんとなく作ってみた,センター試験を真似たフォーマットの線形代数の問題.

もうすぐセンター試験も終わってしまうんだな,と思って.

線形代数.pdf

記事に数式を埋め込むよりもpdfとして差し込む方がキレイだと感じた.
最近のスマートフォンならその方が読み込みも速いだろうし,pdfを読めないことも少なくなっているだろうし.

これまでの内容も,pdfを並載しようかと真剣に悩んでいる.

逆行列の公式

正則行列の逆行列,ブロック行列の性質に関連したいくつかの定理・公式についてのノート.

逆行列補題(Woodburyの公式),Schur補行列を用いたブロック行列の逆行列の表現,複素行列の実行列への埋め込みなどをまとめる.

続きを読む

行列の上三角化

$n$ 次実正方行列 $A$ の各固有値の重複度と,対応する固有空間の次元が一致するとき(あるいは $A$ が $n$ 個の1次独立な固有ベクトルをもつとき),$A$ は対角化可能(diagonalizable)である.一方,$A$ が対角化可能でないときでも,$A$ を上三角化(triangular)することができる.すなわち

\[
P^{-1}AP = \left[
\begin{array}{ccccc}
\lambda_1 & & & & \\
&\lambda_2 & & \ast &\\
& & \ddots & \\
& 0 & & \ddots & \\
& & & & \lambda_n
\end{array}
\right]
\]

なる正則行列 $P$ が存在する.ここで $\lambda_i~~(i = 1,2,\ldots ,n)$ は $A$ の固有値.

この $P$ が存在することを証明したものはよく見かけるが,実際に計算した例を見ることは少ない気がする.難しいことは考えずにとりあえず Jordan 標準形を構成してしまえば,それが上三角化行列になるからだろうか.

今回は正則行列 $P$ によって Jordan 標準形ではない上三角行列を構成する必要がある場合のための計算メモ.
$P$ が存在することの証明はせず,途中の計算も大幅に省略した.時間があればいずれ追記するかもしれない.なお,さらに強い条件として $P$ を直交(ユニタリ)行列にすることもできる(Schur分解).

続きを読む

n項間の漸化式#1

$n$ 項間漸化式から数列の一般項を求める問題を考える.

$2$ 項間,$3$ 項間の漸化式の解法はよく知られているが,今回は線形代数(大学数学)を用いて

\[
a_{n+3} = p a_{n+2} + q a_{n+1} + r a_n + s \tag{$\diamondsuit$}
\]

の形の $4$ 項間漸化式を満たす数列 $\{a_n\}$ の一般項を求める.

続きを読む