About TMyuki

趣味は数学(解析・情報)と手品.アーサー・ベンジャミン氏のような数学エンターテイメントが大好物.

Posts by TMyuki:

Mercator級数

無限級数
\[
\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n} = 1-\frac{1}{2} + \frac{1}{3}-\frac{1}{4} + \cdots
\]
は Mercator級数 と呼ばれ,その値は $\log{2}$ に収束することが知られている.今回はMercator級数と関連する級数の値の導出について,いくつかの手順をまとめる.

続きを読む

Basel問題

Basel 問題は自然数の平方数の逆数の和
\[
\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots
\]
を求める問題である.この級数の和が $\pi^2/6$ に収束することを高校数学の範囲で示す方法についてまとめる.

補足(click)

Basel問題の一般化の1つとして,Riemann(リーマン)によって
\[
\zeta (s) = \sum_{n=1}^{\infty}\frac{1}{n^s} \qquad \text{( $s$ は複素数)}
\]
が与えられている.この関数はRiemann zeta関数とよばれ,$s$ が実数であれば $s > 1$ で収束することが知られている.Basel 問題は $s = 2$ , すなわち $\zeta(2)$ の値を求める問題である.

 

続きを読む

Leibniz の公式

円周率と無限和に関する等式
\[
1-\frac{1}{3} + \frac{1}{5}-\frac{1}{7} + \cdots = \frac{\pi}{4}
\]
を Leibnizの公式 という.ここでは上の式をLeibnizの公式,左辺の級数
\[
\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1} = 1-\frac{1}{3} + \frac{1}{5}-\frac{1}{7} + \cdots
\]
をGregory-Leibniz級数とよぶことにする.今回はLeibnizの公式と関連する級数の値の導出について,いくつかの手法をまとめる.

補足(click)

GregoryはLeibnizと同じ時期に,上の等式を独立に発見したとされるが,実はその300年前にMadhavaによって発見されていたことから,左辺をMādhavaの級数とよぶこともある.

また,Leibnizの公式は次の法則をさす場合がある:

Theorem(Leibniz Rule)

$n$ 回微分可能な関数 $f(x), \, g(x)$ に対して
\[
\frac{d^n}{dx^n} \biggl(f(x)g(x)\biggr) = \sum_{r=0}^{n}{}_{n}\textrm{C}_{r}f(x)^{r}g(x)^{n-r}
\]
が成り立つ.

続きを読む

積分メモ#2

今回は対称性をもつ連続関数の性質を用いた定積分についての簡単なメモ.具体的には,次のような定積分

\[
\int_{0}^{4} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{4-x}} \,dx ~, \quad \int_{0}^{\pi} \frac{x\sin^3{x}}{4-\cos^2{x}}\,dx
\]

の値を求める.

続きを読む

パーフェクト・シャッフル#1

リフル・シャッフル(ウォーターフォール・シャッフル などともよばれる)は,カードをシャッフル(混ぜる)方法の1つで,テレビでマジシャンがよくやっている,2つに分けて,カードの端をパラパラと弾いて,交互に噛ませてシャー・・・というやつである.

このシャッフルを完璧に,すなわちキレイに2つに分け,カードを左右1枚のズレもなく噛みあわせてシャッフルすることを,パーフェクト・シャッフルという.今回はよく知られている事実「パーフェクト・シャッフルを繰り返すと初期の配置にもどる」についてのメモを載せる.

なお,本来のパーフェクト・シャッフルはカードの動きこそ同じだが,元となっているシャッフルの方法が異なる(ファロー・シャッフルという).墓穴を掘りそうなのでここではこれ以上言及しないが.

続きを読む