空間内の3点を通る円
原点を $\textrm{O}(0,0,0)$ とする空間内の一直線上に並んでいない3点
\[
\textrm{P}_1(x_1, y_2, z_3), \ \textrm{P}_2(x_2, y_2, z_2), \ \textrm{P}_3(x_3, y_3, z_3)
\]
を通る円 $C$ の中心 $\textrm{C}(c_1, c_2, c_3)$ と半径 $r$,円弧のパラメータ表示を求める.
原点を $\textrm{O}(0,0,0)$ とする空間内の一直線上に並んでいない3点
\[
\textrm{P}_1(x_1, y_2, z_3), \ \textrm{P}_2(x_2, y_2, z_2), \ \textrm{P}_3(x_3, y_3, z_3)
\]
を通る円 $C$ の中心 $\textrm{C}(c_1, c_2, c_3)$ と半径 $r$,円弧のパラメータ表示を求める.
$n$ 次実正方行列 $A$ の各固有値の重複度と,対応する固有空間の次元が一致するとき(あるいは $A$ が $n$ 個の1次独立な固有ベクトルをもつとき),$A$ は対角化可能(diagonalizable)である.一方,$A$ が対角化可能でないときでも,$A$ を上三角化(triangular)することができる.すなわち
\[
P^{-1}AP = \left[
\begin{array}{ccccc}
\lambda_1 & & & & \\
&\lambda_2 & & \ast &\\
& & \ddots & \\
& 0 & & \ddots & \\
& & & & \lambda_n
\end{array}
\right]
\]
なる正則行列 $P$ が存在する.ここで $\lambda_i~~(i = 1,2,\ldots ,n)$ は $A$ の固有値.
この $P$ が存在することを証明したものはよく見かけるが,実際に計算した例を見ることは少ない気がする.難しいことは考えずにとりあえず Jordan 標準形を構成してしまえば,それが上三角化行列になるからだろうか.
今回は正則行列 $P$ によって(Jordan 標準形を前提とせずに)上三角行列を構成するための手順をまとめた.
$P$ が存在することの証明はせず,途中の計算も大幅に省略した.なお,さらに強い条件として $P$ を直交(ユニタリ)行列にすることもできる(Schur分解).
$4$ 項間漸化式
\[
a_{n+3} = -2a_{n+2} + a_{n+1} + 2a_n-1, \quad a_1 = 1, \quad a_2 = 2, \quad a_3 = 3
\]
で定められる数列 $\{a_n\} \quad (n=1,2,3,\ldots)$ の一般項を行列を使わないで求める手順を載せる.
行列を用いた一般的な解法は以下のノートで扱っている: